Optical Sorting at the Single-Particle Level
Abstract
Position-controlled sorting of colloidal nanoparticles (NPs) at the single-particle level is a challenge in nanoscience. Optofluidic potential wells can partially address this challenge, but they have limited flexibility, reconfigurability, and precision. Here we introduce a strategy by feedback-controlled manipulation of NPs using reconfigurable optical traps with designed intensity and phase gradient. Spatiotemporal patterns of these optical traps coordinatively manipulate the NPs based on machine vision of their positions and differentiated scattering intensities. The NPs are always kept inside the optical field during the manipulation and stably trapped once the sorting is accomplished. To substantiate the key advantages of our approach, we present position-controlled optical sorting of single Ag and Au NPs of the same size (150 nm diameter) and ordering of monodisperse Au NPs (80 ± 9 nm diameter) according to their sub-10 nm radius variation, which can hardly be done via other approaches.
Read full-text here.
Position-controlled sorting of colloidal nanoparticles (NPs) at the single-particle level is a challenge in nanoscience.